The First Step in Digital Identity in the Wild: Human Detection

Ioannis A. Kakadiaris University of Houston

Problem Statement: Human Body Detection

Classification Classification + Localization

Human Body Detection

UNIVERSITY of HOUSTON CBL Changing the way power computer

Problem Statement: Face Detection

Classification

Classification Face Detection + Localization

UNIVERSITY of HOUSTON CBL Changing the way performance of the CBL Changing the CBL Changing the CBL Changing the Way performance of the CBL Changing the CBL Chan

computers people

Challenges: Human Body Detection

Pose

Illumination

Challenges: Human Body Detection

Occlusion

Multi-scale

Challenges: Face Detection

Pose

Expression

Challenges: Face Detection

Blur

Occlusion

Multi-scale

To design, develop, and evaluate human detection algorithms in th wild.

people

Design, develop, and evaluate a human detector for 2D images to overcome occlusion challenge in the wild.

people

Obj. 1: Related Work

[1] C. Zhu, J. Yuan. Bi-box Regression for Pedestrian Detection and Occlusion Estimation. ECCV, 2018.

DVRNet+

Head-aware Feature Enhancement Module

 Use a head supervision signal and a supervised attention mechanism jointly in the RPN stage (HFEM) to provide stable and discriminative information for the network to learn human features

Rationale

- The head could provide more stable (than the visible-body) information to the network because it is rarely occluded
- The head appearance is more discriminative than the visible body

HFEM

• Depiction of the architecture of the Head-aware Feature Enhancement Module. All convolutional layers have the same kernel size of 3x3, padding of 1, and stride of 1.

HFEM (2)

• Depiction of the architecture of the Head-aware Feature Enhancement Module. All convolutional layers have the same kernel size of 3x3, padding of 1, and stride of 1.

HFEM(3)

 Depiction of the architecture of the Head-aware Feature Enhancement Module. All convolutional layers have the same kernel size of 3x3, padding of 1, and stride of 1.

people

HFEM (4)

• Depiction of the architecture of the Head-aware Feature Enhancement Module. All convolutional layers have the same kernel size of 3x3, padding of 1, and stride of 1.

Binary Mask Learning Module

 Depiction of the architecture of the Binary Mask Learning Module. All convolutional layers have the same kernel size of 3x3, padding of 1, and stride of 1.

Attention-based Feature Interleaver Module

 Depiction of the architecture of Attention-based Feature Interleaver Module. All convolutional layers have the same kernel size of 3x3, padding of 1, and stride of 1.

UNIVERSITY of HOUSTON CBL Changin

Dataset

Most widely used dataset for human detection

Dataset	Set	Images
CityPersons	Training	2,975
CityPersons	Validation	500
CityPersons	Testing	1,525

people

Dataset

 Multi-modality (VIS-NIR) dataset for which the performance is not saturated

Dataset	Set	Images
EDGE20	Day(VIS)	2,694
EDGE20	Night(NIR)	797

people

Evaluation Metric

- Log average miss-rate (MR⁻²): Log average miss-rate is calculated by averaging miss rate (MR) at ten FPPI rates evenly spaced in log-space in the range 10⁻² to 10^{0.}
- FPPI = False Positive / number of tested images
- MR = False Negative / number of ground truth boxes

Lower is better

Evaluation Metric (2)

Input:

- 1. detected bounding boxes
- 2. ground truth bouding boxes

Output: MR⁻²

1. Match detection bounding boxes with ground truth bounding boxes in terms of IoU value threshold (0.5). The matched detection bounding box is true positive, the dismatched detection bounding box is false positive.

2. Compute FPPI and MRFPPI = False Positive / number of tested imagesMR = False Negative / number of ground truth boxes

3. Compute MR⁻²

Averaging miss rate at ten FPPI rates evenly spaced in log-space in the range 10⁻² to 10⁰ ([0.0100, 0.0178, 0.03160, 0.0562, 0.1000, 0.1778, 0.3162, 0.5623, 1.000]).

people

UNIVERSITY of HOUSTON CBL Changing the way pool

Baselines

Paper Source	Abbreviation
Zhou et al. ECCV 2018	Bi-Box
Wang <i>et al</i> . CVPR 2018	Repulsion Loss
Zhang <i>et al</i> . ECCV 2018	OR-CNN
Liu <i>et al</i> . CVPR 2019	Adaptive-NMS
Pang <i>et al</i> . ICCV 2019	MGAN

Quantitative Results

MR⁻² on subsets of validation set of CityPersons

Methods	Backbone	MR ⁻²
Bi-Box	VGG-16	11.24
OR-CNN	VGG-16	11.0
Repulsion Loss	ResNet-50	10.9
Adaptive-NMS	ResNet-50	10.8
MGAN	VGG16	10.5
DVRNet+	ResNet-50	10.5

people

Comparison of Model Complexity

Methods	Params(M)	GFLOPs
MGAN	133	15.5
DVRNet+	26	3.80

DVRNet+ has lower model complexity than MGAN.

Qualitative Results

MR⁻² on the EDGE20

Methods	Day	Night
Mod-Bi-box	23.2	100
DVRNet+	18.7	85.8

Statistical Results

P-value	Day	Night
Mod-Bi-box	9 997 -32	7 1100-110
DVRNet ⁺	2.207e °-	7.4196

F test

Statistical Results

P-value	Day	Night
Mod-Bi-box	9 997 -32	7 410 -110
DVRNet⁺	Z.2070 ⁰²	1.4190

F test

DVRNet+ improves the baseline statistically significantly.

Depiction of an input image and the heatmaps of input Rol features and fused attention-based Rol features in the AFIM.

Human features

Background features

(a) The input image

people

Depiction of an input image and the heatmaps of input features and fused attention-based RoI features in the AFIM.

(a) The input image

(b) The heatmap of the input features used for predicting the full-body

Depiction of an input image and the heatmaps of input Rol features and fused attention-based Rol features in the AFIM.

- (a) The input image
- (b) The heatmap of the input features used for predicting the full-body
- (c) The heatmap of the input features used for predicting the visible-body

people

Depiction of an input image and the heatmaps of input Rol features and fused attention-based Rol features in the AFIM.

- (a) The input image
- (b) The heatmap of the input features used for predicting the full-body
- (c) The heatmap of the input features used for predicting the visible-body
- (d) The heatmap of the fused attention-based features obtained by AFIM

people

Depiction of an input image and the heatmaps of input Rol features and fused attention-based Rol features in the AFIM.

(a) The input image

- (b) The heatmap of the input Rol features used for predicting the full-body
- (c) The heatmap of the input Rol features used for predicting the visible-body
- (d) The heatmap of the fused attention-based Rol features obtained by AFIM

people

The AFIM increases the contrast of the human features and background features.

(a) (b) (c) Depiction of an input image and the corresponding heatmaps of RPN feature maps, which are learned by RPN with and without BMLM.

(a) The input image

Depiction of an input image and the corresponding heatmaps of RPN feature maps, which are learned by RPN with and without BMLM.

people

(a) The input image(b) The heatmap of the RPN features without BMLM

Depiction of an input image and the corresponding heatmaps of RPN feature maps, which are learned by RPN with and without BMLM

(a) The input image(b) The heatmap of the RPN features without BMLM(c) The heatmap of the RPN features with RMLM

(c) The heatmap of the RPN features with BMLM

people

(C)

Depiction of an input image and the corresponding heatmaps of RPN feature maps, which are learned by RPN with and without BMLM.

(a) The input image

- (b) The heatmap of the RPN features without BMLM
- (c) The heatmap of the RPN features with BMLM

The BMLM increases the contrast of the human features and background features.

Depiction of an input image and the heatmaps of RPN feature learned with and without head supervision signal.

(a) The input image.

Depiction of an input image and the heatmaps of RPN feature learned with and without head supervision signal.

(a) The input image.

(b) The heatmap of the RPN features without head supervision signal.

Depiction of an input image and the heatmaps of RPN feature learned with and without head supervision signal.

(a) The input image.

- (b) The heatmap of the RPN features without head supervision signal.
- (c) The heatmap of the RPN features with the head supervision signal.

Depiction of an input image and the heatmaps of RPN feature learned with and without head supervision signal.

(a) The input image.

- (b) The heatmap of the RPN features without head supervision signal.
- (c) The heatmap of the RPN features with the head supervision signal.

Head supervision signal is more powerful than visible-body and fullbody supervision signals.

 \checkmark

Head could provide more stable and discriminative information than visible-body.

Qualitative Results (Good)

Qualitative Results (Bad)

Qualitative Results (Good)

Qualitative Results (Bad)

Key Things To Remember

Human-body detection

- Hierarchical relationship inference: head-> visible-body-> full-body
- Discriminative human features
- Understand how the network learns features from visible and near-infrared images.

Design, develop, and evaluate a single stage face detector for 2D images to overcome scale challenge in the wild.

people

Obj. 2: Related Work

Context Aggregation

Obj. 2: Related Work Limitations

Gridding artifacts problem

The DConv has kernel size of 3x3, strides of 1, and dilation rate of 2. The green pixels in the right feature map are obtained by nine green pixels in the left feature map. The pixels with other different colors share the same idea. Therefore, neighboring four pixels in the right feature map are obtained by completely separate four sets of units in the left feature map.

people

Smoothed Context Enhancement Module

Baselines

Paper Source	Abbreviation
Ren et al. NeurIPS 2015	Faster R-CNN
Zhang <i>et al</i> . ICCV 2017	S3FD
Peng <i>et al</i> . CVPR 2017	HR
Najibi <i>et al</i> . CVPR 2017	SSH

Qualitative Results

mAP (%) on subsets of UFDD on each condition

Methods	Rain	Snow	Haze	Blur	Illumination	Lens impediments
Faster R-CNN	54.8	54.9	46.4	68.0	57.9	52.6
SSH	73.5	71.3	65.4	80.6	72.0	59.4
S3FD	75.9	72.3	71.9	83.8	78.0	60.7
HR-ER	75.9	74.3	72.5	84.4	77.2	68.5
SANet	78.7	77.2	75.3	87.8	82.7	69.4

Dataset

 Multi-modality (VIS-NIR) dataset for which the performance is not saturated

Dataset	Set	Images
EDGE20	Day	2,694
EDGE20	Night	797

people

Qualitative Results

mAP (%) on the EDGE20

Method	Day	Night
SANet	85.5	22.0
S3FD	84.0	17.5

Qualitative Results (Good)

Ground truth

Qualitative Results (Bad)

Ground truth

Our prediction

Qualitative Results (Good)

Qualitative Results (Bad)

Conclusion

For human-body detection:

- 1. Compared to visible-body and full-body, the head provides more discriminative information to the network.
- 2. Feature interaction is an effective way of improving performance during training. For each iteration, the network could employ additional contextual information to learn discriminative features.
- 3. Pixel-wise classification task is a good complement of the region-wise classification task.

For face detection:

- 1. Larger receptive field size is more important than consistent local information for detecting multi-scale faces.
- 2. Contextual information is always an effective way of solving the scale problem.

UNIVERSITY of HOUSTON CBL Changing the wa

Thank you!

