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Challenges: Human Body Detection
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Goal

To design, develop, and evaluate human detection algorithms in th  
wild.
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Objective 1

Design, develop, and evaluate a human detector for 2D 
images to overcome occlusion challenge in the wild.



Obj. 1: Related Work
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[1] C. Zhu, J. Yuan. Bi-box Regression for Pedestrian Detection and Occlusion Estimation. ECCV, 2018.



DVRNet+
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Head-aware Feature Enhancement Module
• Use a head supervision signal and a supervised attention

mechanism jointly in the RPN stage (HFEM) to provide 
stable and discriminative information for the network to 
learn human features

Rationale
o The head could provide more stable (than the visible-body) 

information to the network because it is rarely occluded 
o The head appearance is more discriminative than the visible 

body     
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HFEM
• Depiction of the architecture of the Head-aware Feature 

Enhancement Module. All convolutional layers have the 
same kernel size of 3x3, padding of 1, and stride of 1.
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HFEM (2)
• Depiction of the architecture of the Head-aware Feature 

Enhancement Module. All convolutional layers have the 
same kernel size of 3x3, padding of 1, and stride of 1.
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Full-body

Visible-body



HFEM (3)
• Depiction of the architecture of the Head-aware Feature 

Enhancement Module. All convolutional layers have the 
same kernel size of 3x3, padding of 1, and stride of 1.
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HFEM (4)
• Depiction of the architecture of the Head-aware Feature 

Enhancement Module. All convolutional layers have the 
same kernel size of 3x3, padding of 1, and stride of 1.
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Binary Mask Learning Module
• Depiction of the architecture of the Binary Mask Learning 

Module. All convolutional layers have the same kernel size 
of 3x3, padding of 1, and stride of 1.
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Attention-based Feature Interleaver Module
• Depiction of the architecture of Attention-based Feature 

Interleaver Module. All convolutional layers have the same 
kernel size of 3x3, padding of 1, and stride of 1.
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Dataset
• Most widely used dataset for human detection
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Dataset Set Images

CityPersons Training 2,975
CityPersons Validation 500
CityPersons Testing 1,525



Dataset
• Multi-modality (VIS-NIR) dataset for which the 

performance is not saturated
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Dataset Set Images

EDGE20 Day(VIS) 2,694
EDGE20 Night(NIR) 797



Evaluation Metric
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Log average miss-rate (MR-2): Log average miss-rate is calculated by averaging miss 
rate (MR) at ten FPPI rates evenly spaced in log-space in the range 10-2 to 100. 

FPPI = False Positive / number of tested images
MR   =  False Negative / number of ground truth boxes

Lower is better



Evaluation Metric (2)
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Input:
1. detected bounding boxes
2. ground truth bouding boxes
Output: MR-2

1. Match detection bounding boxes with ground truth bounding boxes in terms of IoU value threshold (0.5). 
The matched detection bounding box is true positive, the dismatched detection bounding box is false 
positive.

2. Compute FPPI and MR
FPPI = False Positive / number of tested images
MR = False Negative /  number of ground truth boxes

3. Compute MR-2

Averaging miss rate at ten FPPI rates evenly spaced in log-space in the range 10-2 to 100 ([0.0100, 
0.0178, 0.03160, 0.0562, 0.1000, 0.1778, 0.3162, 0.5623, 1.000]).



Baselines
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Paper Source Abbreviation

Zhou et al. ECCV 2018 Bi-Box

Wang et al. CVPR 2018 Repulsion Loss

Zhang et al. ECCV 2018 OR-CNN

Liu et al. CVPR 2019 Adaptive-NMS

Pang et al. ICCV 2019 MGAN



Quantitative Results
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Methods Backbone MR-2

Bi-Box VGG-16 11.24
OR-CNN VGG-16 11.0
Repulsion Loss ResNet-50 10.9
Adaptive-NMS ResNet-50 10.8
MGAN VGG16 10.5
DVRNet+ ResNet-50 10.5

MR-2 on subsets of validation set of CityPersons



Comparison of Model Complexity
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Methods Params(M) GFLOPs

MGAN 133 15.5
DVRNet+ 26 3.80

DVRNet+ has lower model complexity than MGAN. 



Qualitative Results
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Methods Day Night

Mod-Bi-box 23.2 100
DVRNet+ 18.7 85.8

MR-2 on the EDGE20



Statistical Results
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P-value Day Night

Mod-Bi-box
2.287e-32 7.419e-110

DVRNet+

F test



Statistical Results
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P-value Day Night

Mod-Bi-box
2.287e-32 7.419e-110

DVRNet+

F test

DVRNet+ improves the baseline statistically significantly.



Heatmaps
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(a) (b) (c) (d)
Depiction of an input image and the heatmaps of input RoI features and fused 
attention-based RoI features in the AFIM.

Human features

Background features

(a) The input image



Heatmaps
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(a) (b) (c) (d)
Depiction of an input image and the heatmaps of input features and fused 
attention-based RoI features in the AFIM.

(a) The input image 
(b) The heatmap of the input features used for predicting the full-body



Heatmaps
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(a) (b) (c) (d)
Depiction of an input image and the heatmaps of input RoI features and fused 
attention-based RoI features in the AFIM.

(a) The input image 
(b) The heatmap of the input features used for predicting the full-body
(c) The heatmap of the input features used for predicting the visible-body



Heatmaps
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(a) (b) (c) (d)
Depiction of an input image and the heatmaps of input RoI features and fused 
attention-based RoI features in the AFIM.

(a) The input image
(b) The heatmap of the input features used for predicting the full-body
(c) The heatmap of the input features used for predicting the visible-body
(d) The heatmap of the fused attention-based features obtained by AFIM



Heatmaps
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(a) (b) (c) (d)
Depiction of an input image and the heatmaps of input RoI features and fused 
attention-based RoI features in the AFIM.
(a) The input image
(b) The heatmap of the input RoI features used for predicting the full-body
(c) The heatmap of the input RoI features used for predicting the visible-body
(d) The heatmap of the fused attention-based RoI features obtained by AFIM

The AFIM increases the contrast of the human features and 
background features. 



Heatmaps
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(a) (b) (c)
Depiction of an input image and the corresponding heatmaps of RPN feature 
maps, which are learned by RPN with and without BMLM. 

(a) The input image 

Human features

Background features



Heatmaps
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(a) (b) (c)
Depiction of an input image and the corresponding heatmaps of RPN feature 
maps, which are learned by RPN with and without BMLM. 

(a) The input image 
(b) The heatmap of the RPN features without BMLM



Heatmaps
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(a) (b) (c)
Depiction of an input image and the corresponding heatmaps of RPN feature 
maps, which are learned by RPN with and without BMLM

(a) The input image 
(b) The heatmap of the RPN features without BMLM
(c) The heatmap of the RPN features with BMLM



Heatmaps
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(a) (b) (c)
Depiction of an input image and the corresponding heatmaps of RPN feature 
maps, which are learned by RPN with and without BMLM.

(a) The input image 
(b) The heatmap of the RPN features without BMLM
(c) The heatmap of the RPN features with BMLM

The BMLM increases the contrast of the human features and 
background features. 



Heatmaps
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(a) (b) (c)
Depiction of an input image and the heatmaps of RPN feature learned with and 
without head supervision signal. 

(a) The input image. 

Human features

Background features



Heatmaps
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(a) (b) (c)
Depiction of an input image and the heatmaps of RPN feature learned with and 
without head supervision signal. 

(a) The input image. 
(b) The heatmap of the RPN features without head supervision signal.



Heatmaps
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(a) (b) (c)
Depiction of an input image and the heatmaps of RPN feature learned with and 
without head supervision signal. 

(a) The input image. 
(b) The heatmap of the RPN features without head supervision signal.
(c) The heatmap of the RPN features with the head supervision signal.



Heatmaps
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(a) (b) (c)
Depiction of an input image and the heatmaps of RPN feature learned with and 
without head supervision signal. 

(a) The input image. 
(b) The heatmap of the RPN features without head supervision signal.
(c) The heatmap of the RPN features with the head supervision signal.

Head supervision signal is more powerful than visible-body and full-
body supervision signals. 

Head could provide more stable and discriminative information than 
visible-body.✔



Ground truth

Qualitative Results (Good)
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DVRNet+

DVRNet



Qualitative Results (Bad)
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Ground truth

DVRNet+

DVRNet



Qualitative Results (Good)
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Ground truth

DVRNet+

DVRNet



Qualitative Results (Bad)
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Ground truth

DVRNet+

DVRNet



Future workKey Things To Remember
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Human-body detection
• Hierarchical relationship inference: head-> 

visible-body-> full-body
• Discriminative human features
• Understand how the network learns features 

from visible and near-infrared images. 
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Objective 2

Design, develop, and evaluate a single stage face 
detector for 2D images to overcome scale challenge in 
the wild.



Obj. 2: Related Work
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Context Aggregation
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Concatenation
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Obj. 2: Related Work Limitations
• Gridding artifacts problem
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The DConv has kernel size of 3x3, strides of 1, and dilation rate 
of 2. The green pixels in the right feature map are obtained by 
nine green pixels in the left feature map. The pixels with other 
different colors share the same idea. Therefore, neighboring 
four pixels in the right feature map are obtained by completely 
separate four sets of units in the left feature map.



Smoothed Context Enhancement Module
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Baselines
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Paper Source Abbreviation

Ren et al. NeurIPS 2015 Faster R-CNN

Zhang et al. ICCV 2017 S3FD

Peng et al. CVPR 2017 HR

Najibi et al. CVPR 2017 SSH



Qualitative Results
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Methods Rain Snow Haze Blur Illumination Lens 
impediments

Faster R-CNN 54.8 54.9 46.4 68.0 57.9 52.6
SSH 73.5 71.3 65.4 80.6 72.0 59.4
S3FD 75.9 72.3 71.9 83.8 78.0 60.7
HR-ER 75.9 74.3 72.5 84.4 77.2 68.5
SANet 78.7 77.2 75.3 87.8 82.7 69.4

mAP (%) on subsets of UFDD on each condition



Dataset
• Multi-modality (VIS-NIR) dataset for which the 

performance is not saturated
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Dataset Set Images

EDGE20 Day 2,694
EDGE20 Night 797



Qualitative Results
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Method Day Night

SANet 85.5 22.0
S3FD 84.0 17.5

mAP (%) on the EDGE20



Qualitative Results (Good)
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Ground truth

Our prediction



Qualitative Results (Bad)
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Ground truth

Our prediction



Qualitative Results (Good)
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Ground truth

Our prediction



Qualitative Results (Bad)
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Ground truth

Our prediction



Conclusion
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For human-body detection:
1. Compared to visible-body and full-body, the head provides more 

discriminative information to the network. 
2. Feature interaction is an effective way of improving performance during 

training. For each iteration, the network could employ additional contextua
information to learn discriminative features.

3. Pixel-wise classification task is a good complement of the region-wise
classification task. 

For face detection:
1. Larger receptive field size is more important than consistent local 

information for detecting multi-scale faces.
2. Contextual information is always an effective way of solving the scale 

problem.
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Thank you!
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