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ABSTRACT  

This paper provides a perspective on historical background, innovation and applications of Artificial Intelligence (AI) 

and Machine Learning (ML), data successes and systems challenges, national security interests, and mission 

opportunities for system problems. AI and ML today are used interchangeably, or together as AI/ML, and are ubiquitous 

among many industries and applications. The recent explosion, based on a confluence of new ML algorithms, large data 

sets, and fast and cheap computing, has demonstrated impressive results in classification and regression and used for 

prediction, and decision-making. Yet, AI/ML today lacks a precise definition, and as a technical discipline, it has grown 

beyond its origins in computer science. Even though there are impressive feats, primarily of ML, there still is much work 

needed in order to see the systems benefits of AI, such as perception, reasoning, planning, acting, learning, 

communicating, and abstraction. Recent national security interests in AI/ML have focused on problems including multi-

domain operations (MDO), and this has renewed the focus on a systems view of AI/ML. This paper will address the 

solutions for systems from an AI/ML perspective and that these solutions will draw from methods in AI and ML, as well 

as computational methods in control, estimation, communication, and information theory, as in the early days of 

cybernetics. Along with the focus on developing technology, this paper will also address the challenges of integrating 

these AI/ML systems for warfare. 
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1. INTRODUCTION  

1.1 Dartmouth Summer Conference 

The term “artificial intelligence” (AI) was coined at a Dartmouth Summer Research Project in 1956 [1]. Attendees 

included Minsky, Shannon, Simon, Newall and McCarthy, who went on to become luminaries in the field. The 

institutions they represented (MIT, CMU, and Stanford) continue to be thought leaders and centers of excellence for AI. 

As in any technical area, AI has seen its ebbs and flows, with interest in the large span of subtopics [2]. Central to these 

topics are capabilities inspired by human intelligence, especially in the early days with symbolic descriptions, such as 

perception, reasoning, planning, acting, learning, communicating, and abstraction [3]. Core research and development 

topics include knowledge representation, inference, logic, uncertainty management, neural and belief networks, 

reinforcement learning, and rule-based systems [4] [5].  

1.2 Early Definitions of AI and ML 

Since its beginnings, what is meant by “AI” has continuously changed. Following the Dartmouth project, this loosely 

defined field largely replaced cybernetics, which was a clear outgrowth of work that is now estimation and control. 

However, largely due to Simon and Newell’s work on general problem solver, symbolic AI emerged as more substantial 

strand of work. In parallel, so-called neuromorphic AI (which has always only had superficial similarity to brains) was a 

significant theme, largely through Rosenblatt’s much-hyped work on perceptrons, until that work collapsed under the 
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weight of Minsky and Papert’s book Perceptrons [54]. Rules, frames, and similar logical structures came to dominate AI 

in the 70s and 80s, particularly in defense circles. This work collapsed under the weight of the Lighthill report [55] in the 

UK and a similar report by the American Study Group in the US, which illustrated that this strand of AI was failing to 

live up to its hype, as well.  

The “AI Winter” of the 1980s (largely precipitated by withdrawal of D/ARPA funds from “AI” projects, and the 

discovery that knowledge engineering of large systems was not commercially viable in the private sector) led to a re-

labelling of rule based expert systems AI as “decision support systems.” That is an interesting term, as it implies that 

human decision-making remained in the driver’s seat. 

The revival of neuromorphic AI (and, in fact, a range of related ML algorithms) has been precipitated by commercial 

effects: the availability of cheap and free data on the internet, and the dramatic fall in the price of computation. Thus, 

when most people say AI now, they almost exclusively mean ML. 

An interesting, related effect can be observed by looking at successive years of Gartner Hype Cycle. Many AI topics 

simply vanish after coming over the top of the curve. This is one of the reasons that AI seems to wax and wane 

sinusoidally. It is not the same AI from cycle to cycle. It is just that new technologies are labelled AI, just before they 

fail to meet hype, and then become more useful tools in the systems’ engineering toolkit. 

This continuous change in what “AI” means partially due to confusion caused by the name itself. AI’s precursor term, 

cybernetics, was described by its creator, Weiner [58], as "the scientific study of control and communication in the 

animal and the machine", and the term itself derives from the Greek for “governor.” It is now defined as “a 

transdisciplinary approach for exploring regulatory systems—their structures, constraints, and possibilities.” A variation 

of this transdisciplinary approach also took root in systems engineering and led to growth in fields such as information 

theory, estimation, controls, and optimization led by pioneering work by Bellman, Dempster, Narendra, Bryson, Ho, 

Shannon who led pioneering work in adaptive control, dynamic programming, learning automata, and information 

theory [42][43][44][45][46]. 

In contrast, the term “AI” suffers from the two main conflicting meanings of the word “artificial”: 

 It can have the sense of artificial light. Such light is, in fact, light, but it is created by human-made, rather than 

natural sources, like the sun. 

 It can also have the sense of artificial flowers, which are not flowers, but a functional imitation of them. 

The history of AI, and its hype cycles, are partially because of a search for a “magic bullet” that will create AI in the 

sense of artificial light. That is, a technology that will fundamentally enable machine reasoning that is the same as 

human reasoning, just man made. As various attempts at this magic bullet have failed to hit their mark, they have been 

discarded as “not AI.” Usually, this has meant they become a tool of mainstream programming and (systems) 

engineering. Another reason for the lack of an AI “definition” is because of AI’s role in the development lifecycle. AI is 

mostly considered as a “Research Pursuit”. Adopted AI is just software, i.e. the “AI effect”. For example for a route 

planning apps like Waze, once adopted as software, do not seem “intelligent” anymore. This is best summarized by 

Tesler’s Theorem “AI is whatever has not been done yet” [61]. 

Finally, one of the main reasons AI has not hit the mark is because it continues to be a very difficult problem. Fifty years 

after the Dartmouth conference, McCarthy comments that “AI was harder than we thought” and Minksy that “Easy 

things are hard” [2]. 

This leads to the current state of the field, where Artificial Intelligence (AI) and Machine Learning (ML) today are used 

interchangeably or together as AI/ML and ubiquitous among many industries and applications and where AI largely 

means ML. Yet what AI means and how near it is to human reasoning remains a subject of debate. 

The rest of this paper is structured as follows. Section 2 Innovations and Application of ML; Section 3: Defining AI and 

ML; Section 4: ML Successes and AI Challenges; Section 5: Representation and Inference; Section 6: National Security 

Interests; Section 7 AI and ML National Security Successes; Section 8 Multi-Domain Operations: System of Systems; 

Section 9: Integrated Systems Challenges of AI for MDO; and Section 10: Summary and Conclusions. 
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2. INNOVATIONS AND APPLICATIONS OF ML 

2.1 Since the 2000s 

The recent explosion, primarily based on ML, a subset of AI, began in the early 2000s with the explosion of data and the 

availability of computational resources. In the last decade, this explosion was spurred by the confluence of ML 

algorithms, specifically deep neural networks, large data sets, and fast and cheap computing, as shown in Figure 1 

(adapted from [60]). Algorithms focused on data conditioning, modelling, classification and regression. Work on data 

sets focused on collection, storage, and retrieval, and computing on CPUs and GPUs. Along with academic institutions, 

leaders in the field now include Amazon, Facebook, Google, IBM, NVIDIA Further, with the publicized victories of 

IBM Watson on Jeopardy, DeepBlue on Chess, and then DeepMind on Go, AI/ML has not only demonstrated 

impressive technical feats but also captured the public imagination and became a household word. 

 

Figure 1. ML and Confluence of Algorithms, Data, and Computing 

2.2 Competitive Landscape 

The competitive landscape for ML, which used to be niche, now spans a wide range of applications, industries, and a 

complete technology stack. Applications include enterprise intelligence, enterprise functions, autonomous systems, and 

agents. Industries include agriculture, education, finance and investment, legal, logistics, materials, retail, and 

healthcare. The technology stack includes agent enablers, data science, machine learning, natural language processing, 

data capture, storage, retrieval; open source libraries, and computing hardware [7]. However, note that the combination 

of Data Science expertise and subject matter expertise (SME) is not easily transferable. For example, expertise in 

medical data analytics will not easily transfer to geospatial analytics. 

2.3 Innovations and Highlights  

In the last decade, many innovations and highlights propelled ML. Three of note include Deep Learning, ImageNet, and 

AlphaGo. Deep Learning (DL) [9] is the pioneering work of LeCun, Bengio, and Hinton, whose insight into 

representation and abstraction came from expertise in image analysis and speech recognition from three decades of 

work. Their innovation was to build a common framework for learning multiple levels of representation and abstraction. 

They also comment on their debt to the availability of large data sets and increase in computational power. Note that this 

debt is not just to large data, but large sets of labelled data. The insight into building large ‘labelled’ data comes from 

ImageNet [10] and the work led by Li. Not only did ImageNet build a large, labelled data set, but it also created a 

knowledge ontology, crowdsourced data set labelling, and metrics to benchmark the data set. Interest in AI and games 

has always been a topic of interest in the community, but DeepMind’s AlphaGo, with neural networks trained by subject 

matter experts and reinforcement learning by self-play, defeated a world champion in the ancient game of Go. 

AlphaGoZero [11] took AlphaGo a step further; presented with only rules of the game, it mastered the game by self-play 

without human knowledge training the system.  
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2.4 Current ML Maturity 

As in any field, maturing in both technology and application there are debates. In ML, these debates include the metrics 

and reproducibility of results [12]; lack of insight into why some algorithms, for example Support Vector Machines, 

Principal Component Analysis, work and others do not; and concern that there are no rigorous criteria for choosing one 

ML or DL architecture over another [13], or standardized benchmarks and metrics [14]. Further, practitioners comment 

that, as shown in Figure 3, in most applications, the actual work of ML is primarily focused on conditioning and 

preparing the data [15] or even constructing the data-bases themselves [16], with the actual application of ML algorithms 

becoming a limited part of making these “automatic” and “general purpose” methods succeed. 

 

Figure 2. Data processing, configuration and management, and not ML, is the crux implementation  

2.5 Computational Tools 

With the widespread interest in ML and the applications to data, a practitioner has a vast array of tools across the 

technology stack. At the forefront are Amazon’s SageMaker [17], Facebook’s PyTorch [18], and Google’s TensorFlow 

[19] along with many other tools. These tools allow a practitioner to build a ML system for classification and regression. 

These platforms also offer the practitioner the democratization of ML with entire support ecosystems built around the 

platforms and have contributed to the acceleration of ML adoption. Another topic is the ML “Marketplace” growth – 

trained models and training data (to include synthetic data) are now in demand and able to be purchased. This is an 

entirely new sales channel that has made the ML market more resilient. 

The introduction of ML tools as canned algorithms represents a subtle but important shift. In the past, the utilization of 

ML usually required careful representation design, carefully schematizing the data required to fit a custom-designed 

application. Now data representations and schemata are more likely to be taken off-the-shelf and pipelined into these 

canned algorithms. While this makes ML more easily and widely applicable, it also obscures assumptions made in the 

design of the data schema from the ML practitioner, which can obscure insights on the problem at hand, and it can lead 

to unseen biases and oversights.  

This is part and parcel of the reason that explanations for the results that an ML system produces often remain elusive 

[20] and the continued exploration about how these systems operate on a theoretical level [21]. 

Along with software computational tools, advances in hardware, led by pioneers such as NVIDIA for graphics 

processing units (GPUs), pioneers in cloud computing, and advances in microelectronics and custom “AI chips”  have 

propelled these advances. 

3. DEFINING AI AND ML 

3.1 ML Definitions  

The technical themes of ML, as shown in Figure 2, include clustering (creating discrete groups from unlabelled data), 

regression (creating weights to match independent data), classification (creating a mapping from data to labels), data 

completion (inferring missing or withheld data), and model learning (choosing an ideal representation for data) [8]. This 

has led to a demand from a wide range of industries for ML and specifically for expertise in Data Science. Thus, along 

with ML, the desired background for data scientists includes proficiency in mathematics, statistics, programming, data 

processing, data visualization, and application domain expertise [6]. 
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Figure 3. ML for Clustering, Regression, Classification, Data Completion, and Model Learning 

3.2 AI Definitions  

AI today lacks a precise definition. For example, three recent definitions include  

 “Artificial intelligence is an extremely broad discipline, defined in many different ways for many different 

purposes …. we use the term to mean a variety of information processing techniques and technologies used to 

perform a goal-oriented task and the means to reason in the pursuit of that task” (2018 Defense Innovation 

Board [22]).  

 “An interdisciplinary hub for work in computer science, AI, data science, and related fields” (2018 MIT 

College of Computing announcement [23]). 

 “AI has evolved towards a broadly applicable engineering discipline in which algorithms and data are brought 

together to solve a variety of pattern recognition, learning, and decision-making problems. Increasingly, AI 

intersects with other engineering and scientific fields and cuts across many disciplines in computing” (2017 “A 

Berkeley View of Systems Challenges for AI” [24]). 

 

4. ML SUCCESSES AND AI CHALLENGES 

4.1 ML Successes and AI Challenges  

In recent publications and presentations, leading researchers and practitioners of AI and ML have commented on the 

impressive feats, primarily of ML, and commented that there still is much work to accomplish in order to see the many 

benefits implied by the term “AI”. For instance, perception, reasoning, planning, acting, learning, communicating, and 

abstraction as in real, human intelligence. 

4.2 AI today is mostly ML 

In “AI – The Revolution Hasn’t Happened Yet” [25] Jordan comments that AI today is mostly what has been called ML. 

It blends ideas from many disciplines and designs algorithms that process data, make predictions and helps make 

decisions. However, high-level reasoning and thought remain elusive. Algorithms are assembled ad-hoc and lack an 

engineering discipline with its principles of analysis and design. (Classical) AI, with a focus on meaning and reasoning 

into systems that perform natural language processing, that infer and represent causality, that create and use 

computationally tractable representations of uncertainty; and that create and use systems that formulate and pursue long-

term goals, have not made significant strides as a part of the recent surge of interest in AI. The current public dialog on 

AI focuses on a narrow subset of industries academic efforts, and risks limiting the challenges and opportunities 

presented by the full scope of AI. 

4.3 Focus on Computing rather than Encoding Knowledge 

In “The Bitter Lesson” [26], Sutton comments that the advances in AI are based on leveraging computation and not on 

leveraging domain specific knowledge. For example, in chess and Go, rather than building on an understanding of the 

structure of the games, the AI systems that bettered human master players did so through search and learning based on 

fast computational hardware and software applied at very large scales. Likewise, Sutton makes similar observations for 

computer vision. He summarizes that deeper work in AI begins with building knowledge into agents – in this example, 

knowledge about the structure of vision. By contrast, in the recent advances for computer vision, the focus is on search 

and learning. While this helps in the short term, it cannot be relied on to scale in the long term.  

For example, consider object detection in vision, where the problem is posed as a hierarchy of detection problems [47]. 

The solution begins with detecting edge regions, then constructing line and curve segments, then completing and 

grouping regions and objects, then separating foreground and background, then labelling specific foreground objects and 
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using them for recognition. At each stage, knowledge is encoded. For example, curve reconstruction in the presence of 

uncertain information brings in global information such as line and curve continuity when local edge information is 

either lost or noisy due to insufficient brightness or contrast. Domain knowledge representation is at the focus of 

methods such as Pattern Theory [48] and Perceptual Organization [49]. Correspondingly, one of the main challenges is 

finding the appropriate computation tools for inference that match the complex knowledge representations of the 

problem. Thus, hence, as Sutton observes the focus on computation search is at the expense of these important steps in 

knowledge representation.  

4.4 Associating but not Explaining 

In “The Book of Why” (and summarized in the article “To Build Truly Intelligent Machines, Teach Them Cause and 

Effect”) [27] [28], Pearl comments that the focus of ML is broadly on data association. Today, with large storage and 

fast computation, ML applications find hidden and non-intuitive associations on very large sets. These implementations 

are complex and non-trivial.  Yet, they have not progressed beyond solving data association problems, using ML 

techniques that were, in fact, available a generation ago. They are unable to provide an explanation for their results and 

unable to connect cause and effect. Along with the ability to associate, in order to build the ability to reason or explain, 

Pearl comments that these systems need to build the ability for causal reasoning, to include association, intervention, and 

counter factual reasoning.   

5. REPRESENTATION AND INFERENCE: SEMANTIC DESCRIPTION AND 

NUMERICAL COMPUTATION 

5.1 Representation and Inference  

Consider ML successes and AI challenges from the vantage point of representation and inference. Progress addressing 

challenges to methods in perception, reasoning, planning, acting, learning, communicating, and abstraction have been 

made when the representation of these semantic descriptions have been matched with inference based on numerical 

computation. This progress has come with tradeoffs.  As noted above by Jordan, Sutton, and Pearl, representation based 

on building domain-based model is hard, and the advances in the access and storage of data and access to fast and cheap 

computation have focused on statistical models and computation, not these challenges. Primarily “they have limited and 

narrow function,” which is the observation from LeCun in response to Facebook's progress on speech recognition [30]. 

These complex tasks are built from a sequence of numerical computations and excel at the specific task, but do not 

generalize, and practitioners observe that they are easily fooled. For example, auto grading for on-line learning can be 

fooled by writing a few sentences and a number of key words rather than writing a complete, coherent paragraph [31]. 

5.2 Semantic Description and Numeric Computation 

Even though large and complex, ML progress to date has been made when representation of semantic description by 

statistical models has been matched by inference based on numerical computation of these statistical models. This 

approach works well for a family of particularly “data-oriented”, problems, where the inherent semantic descriptions are 

based on statistical models. 

In “Building Machines that Learn and Think Like People” [29] Lake and colleagues also comment that recent advances 

in ML have focused on discovering high dimensional, abstract features based on statistical pattern recognition with a 

focus on computation. Lake and colleagues comment on their inspiration to draw from human cognition, and that 

“human cognitive abilities remain difficult to understand computationally”. This is similar to the observation Sutton 

makes that contents of the mind are “irreducibly complex,” and the challenge is to find “meta-methods that can find and 

capture this arbitrary complexity”.  

However, they also comment that their focus is on finding methods for these difficult computational problems. These 

methods include incorporating models from physics and psychology. From physics, the models will both constrain and 

guide global search, and from psychology, models for punishment and reward will shape cost or utility functions in both 

spatial and temporal domains. Earlier, we commented on the work from Bayesian Pattern Theory and Perceptual 

Organization. Foundational principles for both these methods also include models from physics and psychology. Next 

Lake and colleagues comment on using models from physics and psychology as building blocks to build causal models 

not only to predict but also to explain observed data.  
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5.3 Waves of AI 

These challenges go back to the early days of AI, and are succinctly described in DARPA Perspectives on AI [32] as the 

“Three Waves of AI (Figure 4). The 1st wave was built on expert systems based on symbolic handcrafted knowledge – 

with results that are explainable but system that are not scalable. The current 2nd wave is built on statistical learning – 

with results that are not are not explainable but systems that are scalable. They comment that the future 3rd wave, based 

on contextual adaptation, will focus on both results [59] that are explainable and systems that are scalable, where 

representation include symbolic information and statistical information and inference includes computation frameworks 

and methods for symbolic and statistical models. The application of AI to warfare is also captured by DARPA’s work on 

Mosaic Warfare [63] with a focus on AI and autonomous systems for decision centric operations. 

 

Figure 4. DARPA “Three Waves” of AI 

6. NATIONAL SECURITY INTERESTS 

Recent United States National Security community documents concerning AI have focused on technology, policy, 

workforce, and problems of national interest. 

 
6.1 DoD AI Strategy 

The primary focus areas of the DoD AI Strategy are: Delivering AI-enabled capabilities that address key missions; 

Partnering with leading private sector technology companies, academia, and global allies and partners; Cultivating a 

leading AI workforce; and Leading in military ethics and AI safety. The Joint Artificial Intelligence Center (JAIC) is a 

focal point of the DoD AI Strategy to accelerate, coordinate, and deliver AI capabilities [33]. 

6.2 ODNI AIM Strategy 

The ODNI (Office of the Director of National Intelligence) AIM (Augmenting Intelligence Using Machines) strategy 

provides guidance on: Investment Strategy; Policy and Authorities; Workforce Strategy; Industry Partnership Strategy; 

Roles for USG (United States Government) Agencies, National Labs, FFRDCs (Federally Funded Research and 

Development Centers), UARCs (University Affiliated Research Centers), Commercial and Academic Institutions; Five 

Eye Foreign Partner Engagement; AI Assurance – Secure and Maintain Competitive Advantage; Outreach / 

Communications Strategy; and Governance [34]. 

6.3 Other Reports 

Other recent reports also include MIT/Lincoln Laboratory Artificial Intelligence: Short History, Present Developments, 

and Future Outlook [35], the National Science and Technology Council [36], Congressional Research Service [37], and 

the Department of Energy [38] and the Government Accountability Office Artificial Intelligence [39]. 

One of the observations in the MIT/Lincoln Laboratory report is the similarities and difference of AI/ML between the 

consumer sector and national security. Along with the observation related to trust and high-end users for national 

security, they also make a critical observation regarding the consequence of actions, i.e., AI/ML used for warfare has 

high consequence of actions, hence also the high priority of ethics in AI for national security [22].  

7. AI AND ML NATIONAL SECURITY SUCCESSES 

7.1 Mission Applications 

National Security applications built on AI/ML span business applications, engineering sub-systems and systems; IT, 

healthcare, and operations and maintenance. In addition, there is continued investment and development across all these 

applications.  
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Sub-system and systems applications include sensor and data fusion, planning, information retrieval and EW. These 

AI/ML methods rely on explicit knowledge of the problem and include methods such as rule-based expert systems, 

probabilistic reasoning, and automated planning. The advantages of these methods include explicit representation of 

knowledge, sound representation of uncertainty, explainable algorithms build trust with users, as well as amenability to 

standard system engineering, test and evaluation, and V&V. The disadvantages of these methods include handcrafted 

knowledge (that is difficult even for some simple problems), reasoning requiring complicated algorithms (e.g., inference 

on Bayesian networks), and development that requires expertise and custom software.  

The recent advances in ML bypass the need for explicit knowledge representation and exploit data directly to solve these 

problems. ML methods used to solve problem directly from data include standard unsupervised learning methods, Deep 

learning and Reinforcement learning. Successes in building component functions for many applications include object 

recognition, speech recognition, and language machine translation. The advantages of these methods include data 

available for training many algorithms, no need for sophisticated reasoning not, training only on data, and the 

availability of open source deep neural network software and convenient development environments. The disadvantages 

include algorithm sensitivity to training data, the potential for training data bias, algorithms that are hard to explain and 

difficult to trust, difficulty in system integration (due in large part to lack of explainability), and that competitors and 

adversaries have access to these tools, advancing computing power speed up for training and execution (for example, 

through neural network chips). 

7.2 AI and ML Successes 

DARPA is at the forefront of developing AI/ML for national security applications. Recent examples include applications 

to RF. Air Combat, C2, and system test and evaluation, validation and verification (TEVV). 

The radio frequency (RF) domain is becoming challenging to operate in as the spectrum becomes ever increasingly 

crowded and the systems that use it become increasingly complex, agile, and less distinct from one another. Recent work 

using deep learning has pushed the bounds two orders of magnitude with >95% classification accuracy at populations of 

10,000 devices [63].Transferring learning provides one means to alleviate the need for operational data, enabling 

learning under similar tasks or from simulated data, with RF transfer learning demonstrating 5% improvement due to 

generalization in some cases and only 2% degradation in constrained cases over training on unavailable operational data 

[64].  Not all emitters are known ahead of time, however, so the approach needs to extend to classify known emitters as 

well as detect novel, operational devices while keeping false positive rates well below 1% [65].  Additionally, labels for 

all devices may not be provided, but downstream processing in the system might require signals separated by emitter, so 

the solution needs to further handle unsupervised clustering of emitters [66]. 

Air combat evolution (ACE) aims to test an AI fighter pilot for autonomous air to air engagements. This program made 

headlines when the AI beat a human pilot 5 times [67]. Other examples include learning algorithms to assess and create 

imbalance in complex games [68], courses of action (COA) for force-on-force engagements. Objective is for AI COAs 

to help red teams develop creative adversaries for blue force training and tactics development. 

In addition, TEVV is a serious challenge for AI/ML systems. Challenges include the lack of a well-defined performance 

space and the lack of predictability and transparency in AI/ML systems, especially the highly nonlinear behaviour of 

deep learning systems. The Assured Autonomy program addressed the challenges of V&V of learning-enabled 

autonomous systems [69]. 

DARPA is also exploring AI/ML programs for mission-integrated network control mission goals inform how 

communications are routed in the network, Engineering AI systems to assemble complex systems involving many AI 

components, O-Drive for automated, cross functional design of systems of systems like planes, car, and ships. 

8. MULTI-DOMAIN OPERATIONS: OPPORTUNITIES AND CHALLENGES 

8.1 Joint Warfighting Concept 

Along with Joint Logistics, Long Range Fires, and Information Advantage, Joint All Domain Command and Control or 

Multi-Domain Operations (MDO) is one of the tenets of the Joint Warfighting Concept. As shown in Figure 5, an 

example of MDO is an “Any Sensor to Any Shooter” “Kill Web” for “Time Sensitive Targeting”, an ensemble of 

platforms, sensors, weapons, and communications integrated to provide decision advantage at machine speed [52][53]. 
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Figure 5. MDO Any Sensor to Any Shooter Kill Web for Time Sensitive Targeting 

8.2 MDO Operationalizing AI and ML  

There are many technical challenges that need to be addressed in order to provide decision advantage at machine speed. 

These include a focus on data science, but also on integrated systems that include sub-systems, systems, and system-of-

systems. One of the integrated systems challenges is the Intelligence, Surveillance, and Reconnaissance (ISR), 

Command Control (C2), and Battle Management (BM) mission loop (Figure 6). For MDO, these are addressed both 

from a system and system-of-systems perspectives. 

 

Figure 6. MDO Sub-Systems, System or Systems-Systems ISR, C2, BM  

From a system perspective, ISR, C2, and BM each have their challenges that include data, synchronization, and effects. 

These systems consist of infrastructure that typically includes platforms and sensors, communications and data links, 

databases and data management, and visualization and dissemination technology. These systems are built to help the 

decision maker collect data, comprehend information, anticipate patterns and courses of action, and disseminate 

knowledge for a variety of missions. Those missions can be characterized by their timelines. Targeting and close air 

support have timelines in the order of seconds; tipping and cueing sensors and situational awareness in the order of 

minutes; force protection and special operations in the order of hours; and trend analysis and intelligence preparation in 

the order of days.  

Along with infrastructure, there are a suite of analytic tools that also support ISR, C2, and BM. Analytic tools that 

support collection include tools for command control that coordinate and synchronize assets across multiple domains and 

organizations; tools for mission planning that plan routes for multiple aircraft simultaneously and in real-time; and tools 

for sensor resource management that balance multiple, competing objectives while simultaneously tasking multiple 

sensors. Analytic tools that support comprehension include single-intelligence target tracking that filters noisy data and 

produces tracks based on sensor data; and multiple-intelligence correlation and fusion that takes data from two or more 

sensors and produces a consolidated track picture. Analytic tools that support anticipation include tools for pattern 

discovery that learn ordinal and temporal patterns and build environmental and normalcy models; rule-based alerts that 

trigger based on partial and approximant matches; and behavior characterization that establishes causality, predicts 

intent, explains anomalies, and analyzes alternatives. This description is similar to the challenges presented in the recent 

NSCAI report [3], in Section 3 “AI and Warfare”, specifically describing “Ways to Operationalize AI”, that are system 

of system operations (Figure 7). 



 

 
 

 

Not Export Controlled per IS 2021-1600 

 

 

Figure 7. NSCAI Ways to Operationalize AI 

These analytic tools support a wide variety of missions, and as such, can be hosted and accessed on a variety of 

platforms, on ground stations, or even at remote sites. MDO will only exacerbate these challenges. One of the challenges 

is that these ISR, C2, and BM systems are mission-specific and existing infrastructure was designed to meet specific 

mission requirements and not designed to be shared. But, for MDO, the objective is to share data, across services and 

even joint coalitions. Initiatives across the national security communities for enterprise and shared services include the 

JIE (Joint Information Environment), ICITE (Intelligence Community Information Technology Enterprise), and Defense 

Intelligence Information Enterprise (DI2E). Challenges that these projects are working through include updating IT 

infrastructure, developing a framework for shared services, and enabling cloud-based solutions.  

Data, in its varied shapes and forms, is a fundamental thread through ISR, C2, and BM. Challenges include managing (1) 

quantity– it has been reported for more than a decade that the national security community uses only a fraction of the 

quantity of data it collects. (2) Rate– any multi-intelligence mission experiences the challenges of the rate with data 

flowing in real-time, or in batches, or as a stream that is required to stay on for weeks or months. (3) Variety – MDO is 

rich in variety, including geospatial intelligence, human intelligence, measurement and signature intelligence, signal 

intelligence, and open-source intelligence, sources that deliver structured, unstructured, semi-structured, and dynamic 

data. (4) Truthfulness – it is critical to establish truthfulness to the intelligence that is produced to ascribe trustworthiness 

to the data. (5) Mission value – finally, provide mission value to the decision maker. 

For example, consider the vignette shown in Figure 8 that includes an ensemble of platforms, sensors, weapons, and 

communications on a strike mission. The vignette begins with:  

1. WAS (wide area surveillance) platform that tracks multiple moving targets.  

2. Then, mission commander assigns FMV (full motion video) platform to PID (positively identify) a track and 

designate the track as a target.  

3. To confirm the target, WAS captures a SAR (synthetic aperture radar) image of the designated target, refining 

its coordinates.  

4. Then WTP (Weapon Target Pairing) algorithm matches available shooters to task against the target. 

5. BMC2 operator then selects the WTP options and transmits strike to task.   

6. Re-tasks the platforms to new missions.   
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Figure 8. MDO ISR, C2, BM Vignette 

8.3 MDO System of Systems  

The DoD has addressed the challenges of System of Systems in many programs. These programs include new initiatives, 

strategic programs, and acquisition programs across both DoD and IC. For System of Systems, challenges include (1) 

management and oversight, (2) operational environment, (3) implementation, and (4) engineering design and 

considerations as summarized in Figure 9 (from Table 2-1 in the DoD Systems Engineering Guide for Systems of 

Systems) [70]. From an engineering perspective one of the primary SoS challenges is integrating systems that were not 

initially designed to be a part of a SoS, thus these systems objectives many not align with SoS objectives.  

 

Figure 9. Comparing Systems and Systems of Systems 

8.4 Evolution of MDO System of Systems  

The solutions to these MDO integrated systems challenges will have a systems view, be time critical, and will support 

validation and verification. The systems view will address tightly coupled system of systems with large amounts of data 

and bi-directional information flowing through multiple levels of security. Time criticality will address many time-

varying decision loops from milliseconds to minutes and hours and varying degrees of data content from rich to sparse. 

Validation and verification will build trust through explainable decisions, traceable back through each decision point, 

and support high consequence actions. 
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As observed in Section 1.2, pioneers understood the close connection between AI/ML and estimation and control for 

systems challenges. Even four decades ago, as shown in Figure 10, Saridis [50] envisioned an autonomous system to 

include estimation, control, and learning; that design begins with a-priori knowledge of underlying models for estimation 

and control. In the MDO case, due to near-peer attacks and information manipulation the system will change due to 

dynamics of the environment, and thus underlying models will have to be updated. 

 

Figure 10. Integrated Systems Estimation, Control, and AI/ML 

With advances and the close interconnections between estimation, control, and learning, the view of systems has also 

evolved. As shown in Figure 10, feedback control methods can tolerate significant model uncertainties and can meet 

complex system specifications around a specific operating point or range. When there is a significant increase in the 

operating range due to increasingly complex system dynamics and uncertainties in the environment, techniques to design 

a class of adaptive controllers that learn optimal control solutions without knowing the full system dynamics or the 

environment are needed [41]. These will include the integration of estimation and control with AI/ML. That is, there is 

an ‘inner loop” for estimation and control, and an ‘outer loop” for adaptation. 

9. INTEGRATED SYSTEMS CHALLENGES OF AI FOR MDO 

9.1 MDO Challenges 

MDO is in response to near-peer, air-land and air-sea great powers conflicts. MDO system of systems is a highly 

complex environment made of both legacy and new platform, sensors, communication, weapons, and analytics focusses 

on heterogeneous and distributed asynchronous operations. ISR will include novel full spectrum sensors, C2 will include 

complex planning problems, and BM account for peer adversarial threats 

In this high intensity conflict against opposing system-of-systems, military operations will still be soldier-centric and the 

goal of AI enabled systems should not be to replace the soldiers, but to give them tools in their arsenal that improve their 

survivability and mission effectiveness.  

 

Figure 11. MDO Integrated Systems Estimation, Control, AI/ML and Game Theory 

As shown in Figure 11, processes of estimation and control each contribute essential elements to the battlefield. Further, 

these systems must operate in dynamic battlefields against peer adversaries. Even the most capable systems, which could 

be augmented with AI/ML, must also integrate learning with estimation and control, so that they can account for 

multiple environments and changes within environments, as well as to changes to themselves. Finally, Game Theory, the 

ability for Blue-Red war gaming and the dynamic need to adapt and learn quickly and for ‘counter-AI’ must be an 

essential capability of these integrated systems. 
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9.2 Opportunities for Using AI/ML for MDO 

Each system in MDO converts observation and state information into decision-making actions and role coordination. 

This closed loop estimation, control, and AI/ML system, Figure 12, begins with off line models and parameters, 

composed using a-priori knowledge. In-situ learning monitors the overall performance against mission objectives, adapts 

according to any mission updates from the operator, and provides assessment for situational awareness and guidance for 

decision-making. Inputs include sensor measurements, video, target information, communication from other systems, 

etc. Outputs include target tracks, classifications, weapon commands, communication to other systems) to perform a 

function (tracking, ID, situation assessment, path planning, weapon management, etc.). When there is a significant 

change, the closed loop estimation, control, AI/ML system updates the necessary models and parameters to fulfil the 

mission.  

 

Figure 12. Closed Loop Estimation, Control, and AI/ML 

Figure 13 illustrates an example. Analysts have divided a search area into quadrants. Their task is to follow (red) high 

value targets amidst many (black) non-combatant targets. Based on a-priori information on high value target behaviour, 

for this mission, Figure 13 left, activity is explicitly constrained to the bottom left quadrant. Thus, target recognition, 

tracking, path planning, and weapon management for ISR, C2, and BM, are all focussed on the bottom left quadrant and 

coordinated between a wide area search platform and a narrow area ID platform. As related to Figure 12, these are 

primarily composed of “inner loop” estimation and control. These models and parameters are built off line a-priori based 

on prior mission understanding. Also per Figure 12, the “AI/ML learning” outer loop monitors this activity.  

When changes in the dynamic battlefield move the area of interest from the bottom left to top right quadrant, it is 

envisioned that the closed loop estimation, control, and AI/ML system, will be able to identify that the high value targets 

move to the top right quadrant (Figure 13 right). For MDO, information about change can also come from learned 

models across domains – a ground based AI-surveillance system in one quadrant could exchange learned target 

behaviour models with airborne surveillance systems. Further, during conflict or in countries where the government does 

not hold a monopoly on force, it can be difficult to determine which force, militia, tribe, or other group controls an area 

[71]. Pictures and videos from social media – while sometimes difficult to verify – can provide information into shifting 

dynamics on the ground [72]. The coordination between the inner loop and the outer loop is a key design feature, 

perhaps best explained by Bellman [43] differentiating between a stochastic control process and an adaptive processes 

based on the information (and uncertainty) related to the system to be controlled. This results in the AI/ML augmenting 

the estimation and control models and parameters that move the surveillance platforms to the top right quadrant and 

continue their mission to follow the high value targets.  

 

Figure 13. (Left) Estimation and Control, based on off-line models and parameters prosecutes High Value Targets      

(Right) AI/ML Augments Models and Parameters Enabling Estimation and Control to continue mission 
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9.3 Challenges of Using AI/ML for System of Systems MDO 

The academic and national security communities acknowledge that MDO integrated systems will build on the individual 

advances made in estimation, control, and AI/ML, and that the confluence and integration of these technologies is still a 

nascent capability, in both theory and practice. A recent DARPA comment succinctly summarizes AI for MDO warfare 

“Warriors will have to understand what it's like to have an AI as a trusted team member …currently, AI isn't yet ready 

for prime time, It's still fragile, opaque, biased and not robust enough, which means it does not yet have trustworthiness” 

[51]. 

The design of AI/ML system of systems for MDO will include challenges for (1) system engineering and design (Figure 

14), (2) component system development (Figure 15), and (3) integrated system development (Figure 16). 

 

 

Figure 14. System Engineering and Design  

 

 

Figure 15. Component System Development  

 

 

Figure 16. Integrated System Development  
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10. SUMMARY AND CONCLUSIONS 

This paper provided a perspective on historical background, innovation and applications of Artificial Intelligence (AI) 

and Machine Learning (ML), including successes, systems challenges, national security interests, and mission 

opportunities for system problems. 

 

The terms AI and ML today are used interchangeably or together as AI/ML, and ubiquitous among many industries and 

applications. The recent explosion, based on a confluence of ML algorithms, large data sets, and fast and cheap 

computing, has demonstrated impressive results in classification and regression and specifically for prediction, and 

decision-making. 

 

Yet, AI/ML today still lacks a precise definition, and as a technical discipline, it has grown beyond its origins in 

Computer Science. Even though there are impressive feats, primarily of ML there still is much work needed to 

accomplish to see the systems benefits of AI such as perception, reasoning, planning, acting, learning, communicating, 

and abstraction. Recent National Security interests in AI/ML have focused on problems including multi-domain 

operations (MDO). This has renewed the focus on a systems view of AI. 

 

For the MDO, similar to DARPA’s “Mosaic Warfare” and NSCAI’s “Operationalizing AI”, the problem is posed as a 

challenge in building and deploying system of systems. Then observed that the opportunities and challenges of AI and 

ML for integrated systems will draw from both symbolic computational methods in AI and ML and numeric 

computational methods in control, estimation, communication, and information theory, as in the early days of 

cybernetics. The confluence and integration of these technologies is still a nascent capability, in both theory and practice. 

Technical challenges include architecture and system integration; computation; communication, cyber, data and 

representation, uncertainty management, information and decision-making, validation and verification, and adversarial 

modelling. The design of AI/ML system of systems for MDO will include challenges for system engineering and design 

(Figure 14), component system development (Figure 15), and integrated system development (Figure 16). 
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